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A B S T R A C T   

The offshore oil industry has expanded to deep water and Arctic. The harsh operating conditions (e.g., ice and 
strong wind) and increasing complicated system raise the occurrence likelihood of system faults. This requires 
timely fault isolation and management in the subsea system. However, the offshore oil industry mainly relies on 
humans to isolate faults based on alarms. With harsh operating conditions and increasing complicated system, 
this industry urgently needs research on more efficient fault isolation and cause diagnosis methods. Unfortu-
nately, limited research is conducted on fault isolation method in the offshore oil industry. Furthermore, in 
industry 4.0 era, large amounts of information are obtained. This provides precondition for the application of 
information fusion technique which aims to improve diagnosis results. However, to the authors’ knowledge, 
information fusion has not been much studied in the fault isolation of the offshore oil industry. Moreover, the 
interaction of different subsystems contains valuable information. How the interaction of different subsystems 
can influence the fault diagnosis has not been explored. This paper proposes a Bayesian network (BN) based 
method for timely fault isolation and cause diagnosis for the offshore oil industry. The work fuses different in-
formation, and it also includes the dependency among different subsystems in the fault diagnosis. As an 
important alarm source, false alarms are also taken into account in the model. A case study on the subject of the 
subsea wellhead and chemical injection systems is conducted to demonstrate the functions and merits of the 
proposed method.   

1. Introduction 

With the depletion of onshore reserves, oil production has expanded 
to deep water and recently to Arctic (Bai and Bai, 2012; Bucelli et al., 
2018). In relation to such development, this industry has faced greater 
challenges in terms of safety due to the extremely harsh environments, 
such as ice, strong winds and waves, vibrations, erosion and complicated 
geological factors (Bucelli et al., 2018; Song et al., 2016; Wu et al., 
2016). Furthermore, a subsea production system includes various 
complicated components (Bai and Bai, 2012). Facilities have become 
increasingly integrated with the advance in automation, software and 
technology, leading to increased system complexity (Goel et al., 2017). 
Both the harsh operating conditions and high system complexity 

increase the likelihood of faults (Bucelli et al., 2018; Cai et al., 2016), 
which causes a heavier demand for efficient fault isolation. 

Facility failure can significantly degrade system performance (Cai 
et al., 2017a), negatively influencing production efficiency. A petro-
chemical company can suffer $50,000,000 to $100,000,000 annual 
losses because of upsets and abnormal situations (Goel et al., 2017). 
Moreover, faults can evolve to catastrophic accidents when systems keep 
operating in a faulty condition (U.S. Chemical safety and hazard 
investigation board, 2011). For example, the DuPont plant in Belle, WV, 
Kanawha kept running after alarm occurrence, without finding out the 
fault. This has led to release of approximately 2000 pounds of methyl 
chloride over five days (U.S. Chemical safety and hazard investigation 
board, 2011). Thus, efficient fault isolation is essential for safe and 
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efficient production. To effectively manage faults, various types of 
sensors have been applied in the subsea production system (Bai and Bai, 
2012). These sensors can generate large numbers of alarms. The alarm 
amount in an industrial system can be 60–120 per hour during normal 
operation, while it can reach approximately 390–3750 alarms per hour 
in upset conditions (Goel et al., 2017; Rothenberg, 2009). This further 
requires quick fault isolation in the alarm management. 

However, workers on the offshore platform manually isolate faults, 
and the efficiency and accuracy of manual diagnosis are influenced by 
multiple factors, such as knowledge, experience and training (Institute 
for Energy Tech, 2017). Furthermore, since a fault may cause different 
abnormal symptoms and an abnormal symptom can be caused by 
various faults (see Fig. 1), efficient manual fault isolation for frequent 
alarms can surpass human capacity, especially during an alarm flood 
(Cai et al., 2017b; Dai et al., 2016). Moreover, in our interview of the 
offshore employees of China National Offshore Oil Corporation, workers 
claimed that much of their work time is consumed by isolating the faults 
related to alarms. Fault isolation has contributed to heavy workload in 
the offshore industry. 

According to above analysis, timely fault isolation is an important 
precondition for efficient production, significant accident prevention 
and relief of the heavy work on offshore platforms. For this purpose, the 
offshore oil industry urgently needs a tool for efficient fault isolation and 
cause diagnosis. Because of the complexity of the offshore production 
system, the proposed diagnostic tool should enable the representation of 
the dependency of different subsystems and the fusion of the abnormal 
symptoms from different types of sensors. It also needs to consider all 
potential faults, including the sensor error. Bayesian network (BN) is a 
powerful tool, completely satisfying these requirements. BN is excellent 
in fusing multiple information and representing the dependency of 
different systems. Compared to other methods, such as the Markov 
chain, fault tree, petri net and principal component analysis (PCA), BN 
can visually demonstrate the dependent relationship among variables 

and avoid state space explosion problems for complex systems (Cai et al., 
2015; Khakzad et al., 2011). Furthermore, BN is powerful to deal with 
uncertainty problems in the fault diagnosis (Cai et al., 2017c). The basic 
concepts of BN are presented in Section 2.1. 

Because of the powerful functions, BN has been widely used for fault 
diagnosis in the process and energy industries (Cai et al., 2017b). Sixteen 
BN-based diagnosis works in these two domains have been reviewed in a 
paper (Cai et al., 2017b). Besides those introduced in that paper, Amin 
et al. (2019) presented a dynamic Bayesian network (DBN) based 
method for fault detection, root cause diagnosis, and fault propagation 
pathway identification. The proposed method was used to diagnose 
faults of two components in the chemical industry separately: a binary 
distillation column and a continuous stirred tank heater. Wang et al. 
(2018) presented a BN which has one child node (symptom) and mul-
tiple parent nodes (root causes). A case study of thermal power plants 
was conducted and found that the proposed method could deal well with 
false and missing alarms, multiple root causes and incompleteness of 
known root causes. Wang et al. (2019) used a simplified BN to diagnose 
the diesel engine fuel injection system. The simplified BN reduces the 
complexity in establishing and applying the diagnosis model. Wang et al. 
(2017) proposed an approach merging a distance rejection technique 
and non-sensor information into the BN to identify new types of faults 
and increase the diagnostic accuracy of chillers. 

However, the application of BN in the offshore area is very limited 
(Cai et al., 2017b). Cai et al. (2017a) used DBN to identify faulty com-
ponents and fault types among the intermittent, transient and perma-
nent faults, considering the degradation process of subsea genius 
modular redundancy control systems. Cai et al. (2016) also proposed an 
object-oriented Bayesian network (OOBN) to conduct fault diagnosis for 
a subsea production system. The OOBN can simplify the models of 
complex systems with repetitive structures. Liu et al. (2015) proposed a 
new development approach of BN for fault diagnosis by adding an 
operational procedure layer in the model. The proposed method was 
used for fault diagnosis in the procedure of closing a subsea blowout 
preventer. These works contribute to the fault diagnosis of subsea sys-
tems. However, some important points have not been investigated.  

• Firstly, a subsea production system includes dependent subsystems. 
The dependency of subsystems contains valuable information for 
fault diagnosis. How to use information from a subsystem to di-
agnose faults in another one has not been studied. 

• Secondly, the above-mentioned works neither explain how BN ach-
ieves information fusion nor analyze the impacts of information 
fusion on the diagnostic results.  

• Thirdly, as a potential fault, the false alarm is an important source of 
abnormal symptoms (Khodabakhsh et al., 2018). However, it is not 
considered as a potential fault node in the above-mentioned works. 

The three points are important to be considered for a practical fault 
diagnosis. In the current work, information from different types of 
sensors and different subsystems is fused to analyze the effects of in-
formation fusion on diagnostic results. Moreover, fault isolation of a 
subsystem based on abnormal symptoms from another subsystem is 
conducted. Furthermore, the node of false alarm is included in the 
diagnosis model. In this work, fault isolation means the process to decide 
faults given detected symptoms from sensors. 

This work is organized as follows. Section 2 presents the proposed 
methodology. In Section 3, a case study of a subsea wellhead system and 
a chemical injection system is conducted to demonstrate the functions 
and merits of the proposed method. Section 4 provides the conclusions. 

2. Proposed methodology 

2.1. Background information 

As one of the most useful tools for probabilistic reasoning, BN can Fig. 1. Relationship among faults and abnormal symptoms.  

G. Song et al.                                                                                                                                                                                                                                    



Journal of Loss Prevention in the Process Industries 67 (2020) 104267

3

well handle the uncertainty problem of fault diagnosis (Cai et al., 2014). 
The oriented BN graph represents variables using nodes and shows their 
dependency with arcs (Song et al., 2016). An important function of BN is 
diagnostic inference (backward inference) considering the dependency 
of variables (Song et al., 2016; Khakzad et al., 2011). As shown in Fig. 2, 
in a fault diagnosis, BN updates the probability of the precedent fault 
variable F using detected state of symptom node S (evidence), according 
to Bayes’ theorem (see Eq. (1)). The posterior probability of the fault 
variable is obtained through the diagnostic inference. Then the most 
likely fault can be identified according to its probability change between 
prior and posterior probabilities (Cai et al., 2016; Wang et al., 2019). 

P(F|S)=
P(Fk).P(S|Fk)

∑n
i=1P(Fi).P(S|Fi)

(1)  

where F is the precedent fault variable, while S is the symptom node. n 
represents the total state of fault node F and k is F’s k-th state. 

Another important concept applied in this work is information 
fusion. Multi-source information fusion (i.e., data fusion) is a technique 
which combines data from multi-sensors and related information of 
databases to achieve improved analysis accuracy and more specific in-
ferences than the application of a single sensor alone (Hall and Llinas, 
1997; Wu et al., 2018). In this study, information fusion refers to inte-
grating symptoms detected by different types of sensors and from 
different subsystems of the subsea production system. For example, 
when one abnormal symptom is detected, to diagnose the fault and 
cause of the abnormal symptom, the node representing the symptom is 
set as abnormal in the BN-based model; then the model is updated to 
obtain the posterior probabilities of related faults and causal nodes. 
Then, if another symptom is detected from another subsystem, this ev-
idence is entered into the model and the BN is further updated to obtain 
the posterior probabilities of related faults and causal nodes, given 
occurrence of the two symptoms. The obtained posterior probabilities 
represent the most likely states of these nodes. In this way, the effects of 
the two pieces of information are fused, using BN in the fault isolation. 

2.2. Method explanation 

This work aims to propose a fault diagnosis model capable of infor-
mation fusion from different types of sensors and different subsystems 
for the offshore oil industry. It also aims to analyze the effects of in-
formation fusion on diagnostic results. To fulfill the goals, a BN-based 
method is proposed and this method is explained in Fig. 3. This 
method considers the fault of false alarm by adding the related node. 

The steps of Fig. 3 are explained using a simple example in Fig. 4.  

(1) Identify faults and causes of abnormal symptoms in the offshore 
oil production system and analyze their dependency. This work 
could be completed referring to fault records, accident investi-
gation reports, academic literature and experience of experts (e. 
g., system designers and experienced workers on platforms) (Cai 
et al., 2016). For example, causes 1–6 and faults 1–3 are identi-
fied for the abnormal symptoms 1 and 2 in Fig. 4.  

(2) Represent the symptoms and identified causes and faults using 
nodes of BN, and link correlative nodes with arcs. As shown in 

Fig. 4, the identified six causes, three faults and two abnormal 
symptoms are represented using nodes and the nodes for each 
subsystem are assigned in a box with a dashed line to clearly show 
subsystem dependency in the diagnosis. For the sake of clarifi-
cation, the nodes of causes and faults are represented using black 
nodes, while abnormal symptoms are red in the proposed model. 
Then the correlative nodes are linked in Fig. 4. For example, 
causes 1–3 are linked to fault 1, and faults 1–2 are linked with 
abnormal symptom 1. In this way, the structure construction of 
BN is completed and a parameter decision of the network will be 
conducted in the following step.  

(3) Identify the prior probabilities of root nodes and conditional 
probabilities of intermediate and leaf nodes (Cai et al., 2016; 
Khakzad et al., 2013). The prior probabilities and conditional 
probabilities can be obtained from historical data, previous 
literature and experts’ experience (Song et al., 2016; Cai et al., 
2014). The Kirsten method to convert expert experiences to data 
is demonstrated in a previous paper (Song et al., 2016) which 
interested readers can refer to. With this information, the quan-
titative relationship and interaction among sensors and sub-
systems are established. The BN-based fault diagnosis model is 
obtained now. 

Fig. 2. Schematic diagram of a basic BN for fault diagnosis.  

Fig. 3. Flow diagram of the proposed work.  

Fig. 4. Information fusion represented by BN.  
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(4) Update BN with the targeted abnormal symptom detected by 
sensors. The observed state of targeted symptom is integrated 
into BN and then the BN is updated to obtain posterior proba-
bilities of causes and faults. The probability changes of causes and 
faults of the targeted abnormal symptom are compared to decide 
their likelihood of being the real faults and causes. The bigger 
probability growth they have, the larger likelihood they are the 
real faults and causes.  

(5) When further symptoms are detected from different types of 
sensors and different subsystems, this information is also entered 
into the BN. Then the probability changes of causes and faults of 
the targeted symptom are further analyzed to decide their like-
lihood of being the real faults and causes.  

(6) Compare the diagnostic results from steps 4 and 5 to demonstrate 
how the information fusion and the inclusion of subsystem 
dependence influence the fault isolation. 

The schematic BN model in Fig. 4 has the following merits. Firstly, 
such a visual form can clearly show all potential causes and faults for an 
abnormal symptom, and thus it informs inexperienced workers of the 
scope of faults and causes. Secondly, it can help employees understand 
the occurrence principle of abnormal symptoms. For example, according 
to Fig. 4, causes 1, 2 and 3 lead to fault 1, which further causes abnormal 
symptom 1. Moreover, the BN represents the interaction of different 
subsystems through information fusion. For example, the abnormal 
symptom in subsystem 1 is linked to the fault located in subsystem 2. By 
establishing the interaction of different subsystems, the BN can isolate 
faults located in a different subsystem. When an abnormal symptom is 
detected, if the employee only focuses on the component where the 
symptom is captured, the real fault located in another component could 
be missed. The proposed method can solve this problem. 

3. An illustrative case 

In this section, a case study is conducted on the subject of fault 
diagnosis of a subsea wellhead system and a chemical injection system to 
demonstrate the function of the proposed method. 

3.1. Model establishment 

Wellheads are essential components of the subsea production system 
(Devold, 2009). Different sensors, such as flow and pressure sensors, are 
assigned to monitor the state of wellheads. Another important system to 
facilitate oil production is the chemical injection system (Chilingarian 
et al., 1987). To guarantee liquid product flowing smoothly, chemicals 
are injected into the liquid product through the injection system (Chi-
lingarian et al., 1987). If the injection facilities do not work properly, 
petroleum could stop flowing and the production process could be 
interrupted (PetroWiki, 2019). This can cause significant loss for the 
offshore platform. To guarantee normal operation of the injection sys-
tem, sensors are also assigned to monitor its states. When faults occur, 
sensors related to wellheads and chemical injection facilities can 
generate abnormal symptoms. Employees need to isolate and fix the 
detected faults in a timely way to guarantee safe and efficient produc-
tion. In this case study, a BN-based diagnosis model is established using 
GeNIe software (BayesFusion LLC, 2019a) to help employees isolate 
faults and diagnose their causes based on symptoms obtained from 
different types of sensors and different subsystems. This case study ex-
plains how the proposed model achieves information fusion and ana-
lyzes the effects of the fusion and subsystem dependency on diagnostic 
results. It also demonstrates how the model enables the isolation of the 
specific fault of false alarm. 

The potential causes, faults and abnormal symptoms are identified 
according to related literature (Chilingarian et al., 1987; Matanovic 
et al., 2012; Penberthy and Shaughnessy, 1992; White et al., 2018) and 
interviews of the offshore employees of China National Offshore Oil 

Corporation. The identified causes, faults and abnormal symptoms are 
shown in Table 1. Following the procedure described in Fig. 3, the fault 
isolation model is obtained as Fig. 5. The prior probabilities of root 
nodes are decided by interviewing the offshore oil workers in China 
National Offshore Oil Corporation and they are shown in Table 1. 

3.2. Qualitative function demonstration 

In Fig. 5, causes (represented using symbol C) and faults (shown by 
symbol F) are black nodes, while abnormal symptoms are red. Fig. 5 
shows that S3 (wellhead pressure increase) can be caused by three po-
tential faults: F9 (liquid production change), F11 (small cross-section of 
well) and F7 (pressure sensor error of wellhead). The first two faults 
have various causes. For example, the causes of liquid production 
change (F9) are liquid amount increase (C1), dense liquid production 
(C2) and much sand production in liquid (C3). This reveals that various 
potential faults (e.g., F7, F9 and F11) exist for an abnormal symptom 
(S3) and also that various potential causes (e.g., C1, C2 and C3) can lead 
to the same fault (F9). Moreover, Fig. 5 shows that C3 (much sand 
production in liquid) not only can lead to S3 (wellhead pressure in-
crease), it can also result in S5 (flow reduction of liquid production) by 
causing F10 (pump abrasion). This reveals that a causal event (e.g., C3) 
can cause different symptoms (e.g., S3 and S5). Thus, it is difficult for 
employees to diagnose faults and isolate causes in a timely way from 
many potential candidates, especially for workers who lack experience. 
However, causes and faults need to be diagnosed quickly to make 
countermeasure decisions in practice. The proposed model can help 
workers to deal with this challenge on offshore platforms. 

Furthermore, the proposed model in Fig. 5 not only shows the po-
tential faults and corresponding causes of each abnormal symptom, but 
also represents the evolutionary path from causal events to faults, and 
further to abnormal symptoms, in a visual form. The visual path can help 
employees to better understand the occurrence principle of abnormal 
symptoms. For example, the causal event C3 (much sand production in 
liquid) has two paths to the abnormal symptom S3 (wellhead pressure 
increase) as shown in Fig. 5. Path 1 (represented by green arcs) means 
that sand is mixed in oil, triggering a density change of the product, and 
this change causes increase of wellhead pressure. Alternatively, path 2 
(shown in orange arcs) means that sand accumulation decreases the well 
section. Consequently, wellhead pressure increases, due to the small 
cross-section of well (F11). Even with the same cause (C3) and abnormal 

Table 1 
Causes, faults and abnormal symptoms.  

Symbol Causes (C), faults (F) & abnormal symptoms (S) Prior 
probabilities 

C1 liquid amount increase 0.10 
C2 dense liquid production 0.10 
C3 much sand production in liquid 0.10 
C4 wax in liquid production 0.10 
C5 nozzle valve turns down 0.05 
F1 injection device blockage 0.03 
F2 lack of chemical supply 0.01 
F3 flow sensor error of chemical injection 0.02 
F4 power system failure for chemical injection 0.005 
F5 voltage increase 0.01 
F6 pressure sensor error of chemical injection 0.02 
F7 pressure sensor error of wellhead 0.02 
F8 flow sensor error of wellhead 0.02 
F9 liquid production change – 
F10 pump abrasion – 
F11 small cross-section of well – 
S1 flow decrease of chemical injection – 
S2 pressure increase of chemical injection – 
S3 wellhead pressure increase – 
S4 high sand rate – 
S5 flow reduction of liquid production – 
S6 increase of electric current in upward stroke & 

decrease of electric current in downward stroke 
–  
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symptom (S3), the evolutionary path is completely different. Different 
paths may need different countermeasures, which will be explained in 
Section 3.2.1. The proposed model can help employees identify the fault 
evolution path, guiding the countermeasure decision. As analyzed 
above, the proposed model clearly shows the complicated relationship 
of causes, faults and abnormal symptoms in subsea systems. Further-
more, the principle concerning how causal events cause faults and 
further lead to abnormal symptoms is clearly demonstrated by the 
model. 

Fig. 5 also shows that the BN-based diagnosis model can capture the 
dependency of different subsystems. For example, the proposed model 
represents the dependency of a wellhead system and a chemical injec-
tion system by linking the potential fault F11 (small cross-section of 
well) of the wellhead system to the abnormal symptoms S1 (flow 
decrease of chemical injection) and S2 (pressure increase of chemical 
injection) of the chemical injection system. Such dependency enables 
fault diagnosis of a system based on abnormal symptoms from another 
system, which will be further discussed in Section 3.2.2. Another merit 
of the proposed model is that it includes the nodes (e.g., F3, F6 – F8) of 
sensor error. In practice, when an abnormal symptom is reported, it is 
not necessarily a real fault in the production system. It could be a false 
alarm caused by sensor error. This scenario should be included in the 
fault diagnosis. The proposed model considered this point; thus, it can 
diagnose abnormal symptoms caused by false alarm. 

3.3. Quantitative analysis 

The proposed model in Fig. 5 can conduct quantitative fault diag-
nosis based on Bayesian theory, shown in Eq. (1). When an abnormal 
symptom is detected, the symptom can be entered into the proposed 
model as evidence. After an update, the posterior probabilities of faults 
and causes are obtained. The larger probability growth the faults and 
causes have, the more likely they are the faults and causes leading to the 
observed abnormal symptom (Cai et al., 2017b; Hall and Llinas, 1997). 
In this section, symptoms from different types of sensors and different 
subsystems are applied to explain how the proposed model can conduct 
information fusion and to analyze how the fusion influences fault 
diagnostic results. The dependency between different subsystems is 
considered and its effect is discussed. The diagnosis of false alarm is also 
demonstrated. 

3.3.1. Fault diagnosis of subsea wellhead system  

1) Fault diagnosis of the targeted abnormal symptom 

When an abnormal symptom S3 (wellhead pressure increase) is 
detected, employees need to find the fault and cause of the wellhead 
pressure increase. In this scenario, the wellhead system is the targeted 
object and pressure increase of the wellhead becomes the targeted 

abnormal symptom. Thus, the occurrence of wellhead pressure increase 
is set as evidence in the model, shown in Fig. 5. Then the model is 
updated and the posterior probabilities of related causes and faults are 
obtained. This update uses clustering algorithm which is fast and exact 
(BayesFusion LLC, 2019b). After comparing the probability growths of 
the three potential faults (F11, F9 and F7) of S3 (wellhead pressure in-
crease), it is found that F9 (liquid production change) has the biggest 
probability growth of 0.506 (see rows 2–4 and column 2 of Table 2). 
Thus, F9 (liquid production change) is considered to be the most likely 
fault. As for the three potential causes (C1, C2 and C3) of fault F9, C3 
(much sand production in liquid) has the biggest probability growth of 
0.269 (see rows 5–7 and column 2 of Table 2). Thus, in this scenario, the 
diagnostic result is that much sand mixes inside and changes the product 
density, which leads to wellhead pressure increase. According to the 
diagnostic result, a grit catcher can be installed to fix this problem. This 
way, the proposed model provides quantitative diagnostic results to 
guide fault management.  

2) Fault diagnosis of the targeted abnormal symptom with one piece of 
fused information 

If an extra symptom S5 (flow reduction of liquid production) is also 
detected, this information can be fused in the proposed model to help 
fault diagnosis of the targeted symptom S3 (wellhead pressure increase). 
After the model update, the probability growths of related faults and 
causes are displayed in column 3 of Table 2. According to rows 2–4 and 
column 3 of Table 2, F11 (small cross-section of well) has the largest 
probability growth (0.732), while the probability growth of F9 (liquid 
production change) becomes the second biggest (0.271). This is because 
fault F11 (small cross-section of well) can lead to S5 (flow reduction of 
liquid production). When S5 is detected, F11 (small cross-section of 
well) is believed to have a larger occurrence likelihood. On the contrary, 
when S5 (flow reduction of liquid production) is detected, the occur-
rence of C1 (liquid amount increase) is almost excluded. Since C1 is one 
of the three causes of fault F9 (liquid production change), when the 
probability of C1 becomes extremely small, the probability growth of F9 
(liquid production change) reduces from 0.506 to 0.271. This is the 
reason why the most likely fault changes from F9 (liquid production 
change) to F11 (small cross-section of well). Furthermore, after 
comparing the three potential causes (C3, C4 and C5) of F11, it is found 
that C3 (much sand production in liquid) is still the most likely cause of 
S3 (see rows 7–9 and column 3 of Table 2). Thus, after fusing the extra 
symptom S5 (flow reduction of liquid production), the diagnostic result 
becomes that much sand accumulates in the well and reduces the well 
section. The small well section leads to wellhead pressure increase. 
Comparing the diagnostic results obtained with and without fusing S5 
(flow reduction of liquid production), it is found that the same cause 
(C3) triggers the same abnormal symptom (S3) through different faults. 
The fault evolution principle is different in the two scenarios, and the 
required countermeasures are also different. When sand accumulates 
and blocks the well, the first step should be cleaning the well to remove 
the accumulated sand (PetroWiki, 2019), which may not be needed in 

Fig. 5. Fault isolation model for subsea wellhead and chemical injection sys-
tems (refer to Table 1 for symbols). 

Table 2 
The probability growths of the faults and causes of abnormal symptom S3.  

Evidence S3 S3 & S5 S3 & S4 & S5  

Probability growth of fault F9 0.506 0.271 0.032 
Probability growth of fault F11 0.330 0.732 0.806 
Probability growth of fault F7 0.030 0.008 0.012 
Probability growth of causal event C1 0.110 − 0.100 − 0.100 
Probability growth of causal event C2 0.148 0.040 0.058 
Probability growth of causal event C3 0.269 0.330 − 0.027 
Probability growth of causal event C4 0.105 0.234 0.352 
Probability growth of causal event C5 0.095 0.210 0.317 

Note: the negative values mean probability decrease instead of growth after 
update. 

G. Song et al.                                                                                                                                                                                                                                    



Journal of Loss Prevention in the Process Industries 67 (2020) 104267

6

the first scenario (see section 1) of 3.3.1). The analysis reveals that after 
fusing extra information, the fault evolutionary path changes. Even 
though the cause and the targeted abnormal symptom are the same, the 
required countermeasures can be different for different evolutionary 
paths. The proposed model enables to identify the evolutionary paths. 
Furthermore, as shown in rows 2–4 and columns 2–3 of Table 2, the 
probability growths of F11, F9 and F7 change from 0.330, 0.560 and 
0.030 to 0.732, 0.271 and 0.008 respectively after including the extra 
information S5 (flow reduction of liquid production). It is obvious that 
the difference of probability growths between F11 and the other two (F9 
& F7) becomes larger after fusing S5. This means that there is much 
more confidence to believe that the fault is F11 (small cross-section of 
well) instead of the other two, after considering S5 (flow reduction of 
liquid production). Thus, with inclusion of the extra information S5 from 
a different type of sensor, the proposed method provides a more confi-
dent diagnostic result.  

3) Fault diagnosis of the targeted abnormal symptom with two pieces of 
fused information 

Although we have more confidence about the diagnosed fault after 
considering the extra abnormal symptom S5, the three potential causes 
(C3, C4 and C5) of the diagnosed fault F11 have similar likelihoods to be 
the real causal event, with probability growths of 0.330, 0.234 and 
0.210 respectively (see rows 7–9 and column 3 of Table 2). Thus, 
although C3 (much sand production in liquid) is the most likely cause of 
S3 (wellhead pressure increase), C4 (wax in liquid production) and C5 
(nozzle valve turns down) still have reasonable chances to be the causes 
of S3 (wellhead pressure increase). Such uncertainty can negatively 
influence effective fault management, since the three potential causal 
events require completely different countermeasures. When another 
extra symptom S4 (no high sand rate) is detected from the sand sensor, 
F11 (small cross-section of well) is still the most likely fault with a 
probability growth of 0.806 as shown in rows 2–4 and column 4 of 
Table 2, but the causal event C3 (much sand production in liquid) has a 
probability decrease of 0.027. Thus, only two relatively likely causes 
remain for the diagnosed fault F11: C4 (wax in liquid production) and 
C5 (nozzle valve turns down) with probability growths of 0.352 and 
0.317, respectively (see rows 7–9 and column 4 of Table 2). In this way, 
this model narrows the scope of relatively likely causes based on in-
formation fusion from different types of sensors. This facilitates cause 
diagnosis and benefits the countermeasure decision. 

3.3.2. Fault diagnosis of chemical injection system  

1) Fault diagnosis of the targeted abnormal symptom by fusing an 
abnormal symptom with a similar diagnostic effect 

If the abnormal symptom S2 (pressure increase of chemical injection) 
is detected in the chemical injection system, workers need to find the 
fault. In this scenario, the chemical injection system is the targeted ob-
ject and pressure increase of the chemical injection becomes the targeted 
abnormal symptom. Then the abnormal symptom S2 (pressure increase 
of chemical injection) is set as evidence in the proposed model of Fig. 5. 
It is found that F1 (injection device blockage) is the most likely fault 
with a probability growth of 0.398, while the second most likely fault is 
F11 (small cross-section of well) with a probability growth of 0.251, as 
shown in column 2 of Table 3. Thus, this abnormal symptom of the in-
jection system is most likely caused by its own fault. Similarly, when 
another abnormal symptom S1 (flow decrease of chemical injection) is 
detected in the chemical injection system, the most likely fault is also F1 
(injection device blockage) with a probability growth of 0.355, and the 
second most likely fault is F11 (small cross-section of well) with a 
probability growth of 0.214 (see column 3 of Table 3). These two 
abnormal symptoms have similar diagnostic results. When the abnormal 

symptom S1 (flow decrease of chemical injection) is fused in the model 
to help isolate the fault of S2 (pressure increase of chemical injection), 
the probability growth of F1 (injection device blockage) increases from 
0.398 to 0.821, and the second most likely fault F11 (small cross-section 
of well) has a far smaller probability growth, reducing from 0.251 to 
0.122 (see columns 2 and 4 of Table 3). This means that after fusing S1 
(flow decrease of chemical injection) into the fault diagnosis of S2 
(pressure increase of chemical injection), the diagnostic effects are 
strengthened and such information fusion provides a more confident 
diagnostic result. Thus, even if some symptoms have similar effects, 
fusion of such abnormal symptoms is also meaningful. It can strengthen 
diagnostic effects and thus can highlight the fault.  

2) Fault diagnosis of the targeted abnormal symptom by fusing an 
abnormal symptom of another system 

If an extra abnormal symptom, S5 (flow reduction of liquid pro-
duction), is detected from a subsea wellhead system, it can help diagnose 
the fault of an abnormal symptom S2 of the chemical injection system. 
When S5 (flow reduction of liquid production) is fused in the fault 
diagnosis of S2 (pressure increase of chemical injection), F11 (small 
cross-section of well) has the biggest probability growth of 0.727. F1 
(injection device blockage) has the second biggest probability growth of 
0.173, much smaller than that of F11 (see column 5 of Table 3). This is 
because only F11 (small cross-section of well) can lead to both S2 
(pressure increase of chemical injection) and S5 (flow reduction of liquid 
production) among all the faults of S2. When S5 is detected together 
with S2, F11 (small cross-section of well) is believed to be the most likely 
fault of S2 (pressure increase of chemical injection). This diagnosis used 
abnormal symptoms from different systems, which reveals the ability of 
the proposed model to conduct diagnosis across systems. Furthermore, it 
is found that even though the abnormal symptom has been detected in 
the chemical injection device, the fault is related to the wellhead system 
instead of the injection device. This means that even if a system (e.g., 
chemical injection system) has abnormal symptoms, the real fault may 
most likely be located in another system (e.g., wellhead system). If the 
employees are misled by symptoms and directly replace equipment 
which produces the abnormal symptoms, it cannot fix the real faults. 
The proposed model represents dependency of different systems. Such 
dependency enables the model to diagnose faults of a system based on 
abnormal symptoms from another one. 

3.3.3. False alarm diagnosis 
Numerous sensors are assigned in the subsea production system (Bai 

and Bai, 2012; Khodabakhsh et al., 2018). However, sensors are not 
always reliable and they can generate abnormal symptoms, even if the 
production system is operating normally (Khodabakhsh et al., 2018). 
False alarm can be an important source of abnormal symptoms. This 
point is considered in the proposed model of Fig. 5. When three symp-
toms, S1 (flow decrease of chemical injection), S2 (no pressure increase 
of chemical injection) and S6 (normal electric current), are detected, the 
probability of F3 (flow sensor error of chemical injection) increases from 
0.020 to 0.192. It has the second biggest probability growth of 0.172, 
while F2 (lack of chemical supply) has the biggest probability growth of 
0.276. Although the most likely fault is F2 (lack of chemical supply), the 
abnormal symptom S1 (flow decrease of chemical injection) still has a 
reasonable likelihood to be caused by a false alarm, since the probability 
growths of F2 and F3 do not have a large difference. This result can be 

Table 3 
The probability growths of faults F1 and F11 given detected information.  

Evidence S2 S1 S1 & S2 S2 & S5 

Probability growth of fault F1 0.398 0.355 0.821 0.173 
Probability growth of fault F11 0.251 0.214 0.122 0.727  
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explained as follows. The fault in a production facility can cause 
different abnormal symptoms. When other types of sensors do not detect 
abnormality, the only one releasing abnormal signal has a reasonable 
likelihood of giving a false alarm. The proposed model deals with this 
scenario by including false alarm nodes; thus, it not only can isolate the 
faults in production facilities, but also can diagnose the potential faults 
of sensors. 

4. Conclusions 

This work aims to isolate faults and diagnose causes for a subsea 
production system considering information fusion and subsystem de-
pendency. A BN-based approach is proposed to fuse information from 
different types of sensors and different subsystems. The interaction of 
subsystems is represented and the specific fault of false alarm is also 
included in this approach. A case study of the subsea wellhead system 
and chemical injection system is conducted. The functions and merits of 
the proposed method are demonstrated using the illustrative case. The 
following conclusions are obtained.  

(1) The complicated relationship among causes, faults and abnormal 
symptoms is represented in a visual form. It informs inexperi-
enced workers of the scope of faults and causes and helps workers 
understand the occurrence principle of abnormal symptoms.  

(2) The evolutionary path of the fault is shown for the sake of fault 
management. The evolutionary path of a fault changes after 
fusing extra information. Different countermeasures are required 
for different evolutionary paths, even if the diagnosed causal 
event and abnormal symptom are the same.  

(3) By integrating extra information from a different type of sensors, 
the approach obtains a more confident diagnostic result of an 
abnormal symptom. The scope of relatively likely causes can also 
be narrowed based on such information fusion.  

(4) After including the dependency of different subsystems, the 
approach can diagnose the fault of a subsystem based on the 
abnormal symptoms from another one.  

(5) The approach includes false alarm nodes. Thus, it can diagnose 
the potential fault of sensors. 

While this work focuses on the subsea system, the proposed method 
can facilitate fault isolation and cause diagnosis in multiple areas, such 
as the chemical plant. 
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